Article ID Journal Published Year Pages File Type
2064596 Toxicon 2015 11 Pages PDF
Abstract

•Escherichia coli alone strongly increased cytokines and TLRs mRNA in intestinal epithelial cells.•ZEA alone showed marginally effect (increase/decrease) on cytokines and TLRs expression.•Combination of the two contaminants increased inflammatory mRNA markers in intestinal cells.•Lactobacilli mix down-regulated inflammatory mRNA markers increased by E. coli and ZEA.

This work investigated the effect of Escherichia coli K88 and zearalenone contamination on pro-inflammatory gene expression (Toll like receptors, cytokines) and signalling molecules and the protective activity of a mixture of Lactobacilli sp. (Lactobacillus plantarum, Lactobacillus acidofilus and Lactobacillus paracasei) in porcine intestinal epithelial cells as part of the local immune system.IPEC-1 cell monolayer was exposed for 1 h to the individual or combined action of E. coli, zearalenone and lactobacilli mixture. Our results showed that TLRs (1–10) and cytokine (IL-1,-6,-8,-10, TNF-α, IFN-γ) genes expressed early (after 1 h of culture) in IPEC-1 cells. E. coli alone increased the TLRs mRNA expression, especially TLR4 and the inflammatory cytokines while ZEA alone showed either no effect or a marginally effect on TLRs, cytokines, and signalling genes when compared to untreated cells. The combined actions of the two contaminants lead to a synergistically up-regulation of key cytokines (IFN-γ, IL-10 and TNF-α) and TLRs (-2,-3,-4,-6, and -10). The live lactobacilli mixture was able to attenuate the pathogen and mycotoxin-induced response by downregulated the majority of inflammatory related genes suggesting that this mixture has an immunomodulatory potential and may be used to lower the inflammatory response.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , , ,