Article ID Journal Published Year Pages File Type
206494 Fuel 2010 5 Pages PDF
Abstract

The numerical simulation of Solid Recovered Fuels (SRF) co-combustion in pulverised coal power plants requires a flexible particle model, which among other properties should be able to predict the aerodynamic behaviour of the irregular-shaped particles, especially their trajectories along the boiler axis. This will help to provide vital information on whether the SRF particles are entrained in the combustion gases or drop to the boiler bottom. One difficulty encountered in the process is the true value of the drag coefficient (CD) of the coarse SRF particles. Most of the numerical simulation codes calculate the particle trajectories by integrating the force balance of the particles in which the CD plays an important role. As a result, a true CD of SRF will definitely lead to more realistic results.In this short communication, the authors have taken a practical approach in determining the CD of the SRF. It was found that within the Newton’s law range the CD of the SRF lies between 0.6 and 2.0 with a mean value of 1.5. The results were further validated by correlating the calculated lift velocities of SRF using different CD values and that obtained through experiment.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,