Article ID Journal Published Year Pages File Type
2065486 Toxicon 2007 11 Pages PDF
Abstract

Snake venom induced consumption coagulopathy (VICC) is a common complication of snake bite due to prothrombin activators or thrombin-like enzymes in the venom. This study aimed to determine the efficacy and dose of antivenom for treating VICC in patients envenomed by brown snakes (Pseudonaja spp.), including in vitro coagulation studies. In serial blood samples from patients with brown snake envenoming, venom and antivenom concentrations were measured using enzyme immunoassays. In vitro mixtures of brown snake venom and antivenom were used to investigate antivenom binding, neutralisation of prothrombin activity, prevention of venom-mediated clotting and effect on thrombin generation parameters using a thrombinoscope. In 27 envenomed patients the median venom concentration was 20 ng/mL (Interquartile range[IQR]:12–44 ng/mL) prior to antivenom and was not detected after antivenom administration, including 9 patients given one vial. In vitro, 200 μg/mL of antivenom bound all free venom at venom concentrations seen in patients. In vitro prothrombinase activity of the venom (using a chromogenic substrate) was not neutralised by antivenom. However, for venom concentrations seen in humans, 100 μg/mL of antivenom prevented venom clotting activity in human plasma and 479 μg/mL neutralised procoagulant venom activity measured by triggering thrombin generation. One vial of antivenom appears to be sufficient to bind and neutralise all venom in patients with severe brown snake envenoming.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , , ,