Article ID Journal Published Year Pages File Type
2065521 Toxicon 2010 13 Pages PDF
Abstract

Snake venoms are complex mixtures of pharmacologically active peptides and proteins. These protein toxins belong to a small number of superfamilies of proteins. Three-finger toxins belong to a superfamily of non-enzymatic proteins found in all families of snakes. They have a common structure of three β-stranded loops extending from a central core containing all four conserved disulphide bonds. Despite the common scaffold, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. Thus, the structure–function relationships of this group of toxins are complicated and challenging. Studies have shown that the functional sites in these ‘sibling’ toxins are located on various segments of the molecular surface. Targeting to a wide variety of receptors and ion channels and hence distinct functions in this group of mini proteins is achieved through a combination of accelerated rate of exchange of segments as well as point mutations in exons. In this review, we describe the structural and functional diversity, structure–function relationships and evolution of this group of snake venom toxins.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, ,