Article ID Journal Published Year Pages File Type
2065638 Toxicon 2010 8 Pages PDF
Abstract

The effects of Pacific ciguatoxin-4B (P-CTX-4B, also named gambiertoxin), extracted from toxic Gambierdiscus dinoflagellates, were assessed on nodal K+ and Na+ currents of frog myelinated axons, using a conventional voltage-clamp technique. P-CTX-4B decreased, within a few minutes, both K+ and Na+ currents in a dose-dependent manner, without inducing any marked change in current kinetics. The toxin was more effective in blocking K+ than Na+ channels. P-CTX-4B shifted the voltage-dependence of Na+ conductance by about 14 mV towards more negative membrane potentials. This effect was reversed by increasing Ca2+ in the external solution. A negative shift of about 16 mV in the steady-state Na+ inactivation-voltage curve was also observed in the presence of the toxin. Unmodified and P-CTX-4B-modified Na+ currents were similarly affected by the local anaesthetic lidocaine. The decrease of the two currents by lidocaine was dependent on both the concentration and the membrane potential during pre-pulses. In conclusion, P-CTX-4B appears about four times more effective than P-CTX-1B to affect K+ channels, whereas it is about 50 times less efficient to affect Na+ channels of axonal membranes. These actions may be related to subtle differences between the two chemical structures of molecules.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , ,