Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2067319 | Cell Biology International | 2008 | 5 Pages |
Abstract
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670Â nm, energy density of 4.5Â J/cm2 and power density of 45Â mW/cm2. Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biophysics
Authors
MaÃra Maftoum-Costa, Karina Teixeira Naves, Alexandre Lima Oliveira, Antonio Cláudio Tedesco, Newton Soares da Silva, Cristina Pacheco-Soares,