Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2067538 | Cell Biology International | 2008 | 8 Pages |
Abstract
The strategy of mesenchymal stem cells (MSCs) transplantation is limited by the inability to deliver a large number of grafted cells that resist peri-transplantation apoptosis in ischemic tissues, and this led us to investigate methods of improving the viability of these cells. We demonstrate the presence of voltage-gated potassium channels in rat MSCs that can be activated by staurosporine (ST). MSCs exposed to ST underwent apoptotic cell changes. Tetraethylammonium (TEA), a classic blocker of K+ channels, blocked the ST-induced augmentation of K+ currents, and reduced ST-induced apoptosis. Furthermore, we found that TEA prevented the ST-induced increase in expression of the pro-apoptotic protein Bax and decrease of the anti-apoptotic protein Bcl-2. Taken together, our findings suggest that voltage-gated potassium is involved in ST-induced apoptosis of rat MSCs. TEA blocks the ST-induced augmentation of K+ currents, alters the expression of Bcl-2 family proteins induced by ST, and attenuates the apoptosis of rat MSCs.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biophysics
Authors
Shaoping Wang, Jian-an Wang, Jun Li, Jinghong Zhou, Hai Wang,