Article ID Journal Published Year Pages File Type
2070342 Progress in Biophysics and Molecular Biology 2007 10 Pages PDF
Abstract

Three biological settings involving self-organization performed by the Turing-Child field inside a sphere and on its surface are considered. In the first setting the interior of a sphere made up of cells communicating via gap junctions is considered. It is suggested that the Turing-Child self-organization is the cause of radial polarization, the first differentiation of an early mammalian embryo. In the second setting, the Turing example of gastrulation of a hollow cellular sphere is considered. It is shown that Child's experimental patterns are predicted and explained by the Turing-Child theory. The third setting is the interior of a biological cell, and it is suggested that it is the self-organization of the Turing-Child field that causes the formation of the mitotic spindle.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biophysics
Authors
,