Article ID Journal Published Year Pages File Type
2070863 Advanced Drug Delivery Reviews 2014 12 Pages PDF
Abstract

Tumor–stroma interactions have emerged as critical determinants of drug efficacy. However, the underlying biological and physicochemical mechanisms by which the microenvironment regulates therapeutic response remain unclear, due in part to a lack of physiologically relevant in vitro platforms to accurately interrogate tissue-level phenomena. Tissue-engineered tumor models are beginning to address this shortcoming. By allowing selective incorporation of microenvironmental complexity, these platforms afford unique access to tumor-associated signaling and transport dynamics. This review will focus on engineering approaches to study drug delivery as a function of tumor-associated changes of the vasculature and extracellular matrix (ECM). First, we review current biological understanding of these components and discuss their impact on transport processes. Then, we evaluate existing microfluidic, tissue engineering, and materials science strategies to recapitulate vascular and ECM characteristics of tumors, and finish by outlining challenges and future directions of the field that may ultimately improve anti-cancer therapies.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (321 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , ,