Article ID Journal Published Year Pages File Type
2071538 Advanced Drug Delivery Reviews 2009 10 Pages PDF
Abstract

Electrospun nanofibers with a high surface area to volume ratio have received much attention because of their potential applications for biomedical devices, tissue engineering scaffolds, and drug delivery carriers. In order to develop electrospun nanofibers as useful nanobiomaterials, surfaces of electrospun nanofibers have been chemically functionalized for achieving sustained delivery through physical adsorption of diverse bioactive molecules. Surface modification of nanofibers includes plasma treatment, wet chemical method, surface graft polymerization, and co-electrospinning of surface active agents and polymers. A variety of bioactive molecules including anti-cancer drugs, enzymes, cytokines, and polysaccharides were entrapped within the interior or physically immobilized on the surface for controlled drug delivery. Surfaces of electrospun nanofibers were also chemically modified with immobilizing cell specific bioactive ligands to enhance cell adhesion, proliferation, and differentiation by mimicking morphology and biological functions of extracellular matrix. This review summarizes surface modification strategies of electrospun polymeric nanofibers for controlled drug delivery and tissue engineering.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , ,