Article ID Journal Published Year Pages File Type
207284 Fuel 2009 8 Pages PDF
Abstract

This study is aimed at developing an alkaline/surfactant-enhanced oil recovery process for heavy oil reservoirs with oil viscosities ranging from 1000 to 10,000 mPa s, through the mechanism of interfacial instability. Instead of the oil viscosity being reduced, as in thermal and solvent/gas injection processes, oil is dispersed into and transported through the water phase to production wells.Extensive emulsification tests and oil/water interfacial tension measurements were conducted to screen alkali and surfactant for the oil and the brine samples collected from Brintnell reservoir. The heavy oil/water interfacial tension could be reduced to about 7 × 10−2 dyn/cm with the addition of a mixture of Na2CO3 and NaOH in the formation brine without evident dynamic effect. The oil/water interfacial tension could be further reduced to 1 × 10−2 dyn/cm when a very low surfactant concentration (0.005–0.03 wt%) was applied to the above alkaline solution. Emulsification tests showed that in situ self-dispersion of the heavy oil into the water phase occurred when a carefully designed chemical solution was applied.A series of 21 flood tests were conducted in sandpacks to evaluate the chemical formulas obtained from screening tests for the oil. Tertiary oil recoveries of about 22–23% IOIP (32–35% ROIP) were obtained for the tests using 0.6 wt% alkaline (weight ratio of Na2CO3 to NaOH = 2:1) and 0.045 wt% surfactant solution in the formation brine. The sandpack flood results obtained in this project showed that a synergistic enhancement among the chemicals did occur in the tertiary recovery process through the interfacial instability mechanism.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,