Article ID Journal Published Year Pages File Type
207321 Fuel 2010 14 Pages PDF
Abstract

The group combustion of interacting heptanes liquid droplets are numerically simulated by solving two dimensional unsteady laminar Navier–Stokes equations. The unsteady computations for the time-varying vaporization of multi-droplets are carried out with parameters of the Reynolds number (Re), the separation distance (S) between the droplets, and the oxygen mole-fraction. The n-heptane droplets initially at T0 = 300 K are in hot air of 10 atm at Tg = 1250 K. Multi-droplets are staggeringly arranged at a separation distance ranging from 4 to 15 droplet radius. The Reynolds number, based on the droplet diameter and free stream velocity, is varied from Re = 10 to 50. The oxygen mole-fraction of the surrounding air is changed from 15% to 90%. The time variations of the flame structure, the combustion characteristics, and the burning rates are presented and discussed. These results indicated that the staggered arrangement of the multi-droplets induced combustion characteristics distinct from those of a single droplet. The burning rate of the interacting droplets in the staggered arrangement exhibited a relatively strong dependence on the Re, S, and oxygen mole-fraction. The burning rate of the interacting multi-droplets, non-dimensionalized by that of a single droplet, was found as a function of S and Re.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,