Article ID Journal Published Year Pages File Type
207507 Fuel 2009 12 Pages PDF
Abstract

An optimized reduced mechanism of n-heptane including 42 species and 58 elementary reactions adapted to charge stratification combustion is developed first in this study. Some engine experiments and a fully coupled CFD and reduced chemical kinetics model with n-heptane as fuel are adopted to investigate the combustion processes of HCCI-like charge stratification combustion aimed at diesel HCCI application. For premixed/direct-injected stratification combustion, the low temperature reaction occurs in the regions with homogeneous fuel first and high temperature reaction begins from high fuel concentration regions involved in the spray process. With the increase of the injection ratio, the high temperature reaction occurs in advance, the pressure rise rate reduces, UHC emissions decrease and CO emissions increase. At larger injection ratio, the onset of the high temperature reaction advances and the maximum pressure rise rate decreases with the retarding of injection timing. UHC and CO emissions have relation to the fuel spray penetration at different injection timings. NOx emissions increase rapidly with the increase of the stratification degree.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,