Article ID Journal Published Year Pages File Type
2076043 Biosystems 2014 5 Pages PDF
Abstract

Gluconobacter oxydans is a Gram-negative bacterium with a number of biotechnological applications. Although the genome of G. oxydans has been reported in 2005, the systematical cellular metabolism in this high-value bacterium, however, remains unclear. In this study, a genome-scale metabolic network of G. oxydans 621H, iXW433, was reconstructed and validated on the basis of the known genome annotations and biochemical information. This reconstructed model included 433 genes, 859 reactions, and 985 metabolites. To test the capability of the model, gene and reaction essentiality analysis, flux variability analysis, and robustness analysis simulations were performed. The metabolic states predicted by the model were highly consistent with the experimental data of G. oxydans. According to the result, 92 genes and 137 reactions were identified to be essential, 194 reactions were found to be variable by flux variability analysis, and 2 possible genetically modified targets were determined. The model would be valuable for further research on G. oxydans and thereby expanding its application.

Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
, , ,