Article ID Journal Published Year Pages File Type
2076459 Biosystems 2009 4 Pages PDF
Abstract
A minimal model proposed by the author [Zhdanov, V.P., 2004. Stochastic kinetics of reproduction of virions inside a cell. Biosystems 77, 143-150] to describe intracellular viral kinetics includes genome replication, mRNA and protein synthesis and degradation, capsid assembly, and virion release from a cell. Here, this model is complemented by the terms describing the balance of the amino acid determining the rate of the synthesis of viral capsid protein. If the effect of virions on this balance is negligible, the model predicts either a steady state or unlimited growth of the virion population. In the latter case, the cell eventually reaches the situation when the amino-acid concentration is reduced due to the synthesis of viral protein. For this stage, the viral-genome replication is asymptotically predicted to be unlimited while the virion population is limited. The unlimited viral-genome replication practically means that the cell will either die or the kinetics will be limited by additional feedbacks which were not taken into account in the model. All these findings, illustrating the use of the methods of integrative biology of biosystems, help to understand the role of the amino-acid supply in intracellular viral kinetics.
Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
,