Article ID Journal Published Year Pages File Type
2076762 Biosystems 2008 5 Pages PDF
Abstract
Conventional kinesin is a motor protein, which is able to walk along a microtubule processively. The exact mechanism of the stepping motion and force generation of kinesin is still far from clear. In this paper we argue that neck linker docking is a crucial element of this mechanism, without which the experimentally observed dwell times of the steps could not be explained under a wide range of loading forces. We also show that the experimental data impose very strict constraints on the lengths of both the neck linker and its docking section, which are compatible with the known structure of kinesin.
Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
, , ,