Article ID Journal Published Year Pages File Type
2076773 Biosystems 2008 7 Pages PDF
Abstract

Theoretical considerations of stochastic signal transduction in living cells have revealed the gain-fluctuation relation, which provides a theoretical framework to describe quantitatively how noise is generated, amplified and propagated along a signaling cascade in living cells. We chose the chemotactic signaling of bacteria and eukaryotic cells as a typical example of noisy signal transduction and applied the gain-fluctuation relation to these signaling systems in order to analyze the effects of noise on signal transduction. Comparing our theoretical analysis with the experimental results of chemotaxis in bacteria Escherichia coli and eukaryote Dictyostelium discoideum revealed that noise in signal transduction systems limits the cells’ chemotactic ability and contributes to their behavioral variability. Based on the kinetic properties of signaling molecules in living cells, the gain-fluctuation relation can quantitatively explain stochastic cellular behaviors.

Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
, ,