Article ID Journal Published Year Pages File Type
2076799 Biosystems 2007 12 Pages PDF
Abstract
The conceptual divide between formal systems of computation and abstract models of chemistry is considered. As an attempt to concretely bridge this divide, a formalism is proposed that describes a constructive artificial chemistry on a space of directed graph structures. The idea for the formalism originates in computer science theory, with the traditional abstraction of a physical machine, the finite-state machine (FSM). In the FSM, the machine (state-transition graph) and input string (series of binary digits) are fundamentally distinct objects, separated by nature of the underlying formalism. This distinction is dissolved in the proposed system, resulting in a construction process that is r eflexive: graphs interact with their own topological structure to generate a product. It is argued that this property of reflexivity is a key element missing from earlier model chemistries. Examples demonstrate the continuous emergence complex self-similar topologies, novel reaction pathways, and seemingly open-ended diversity. Implications of these findings are discussed.
Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
,