Article ID Journal Published Year Pages File Type
207854 Fuel 2009 10 Pages PDF
Abstract

The integrated gasification combined cycle (IGCC) as an efficient power generation technology with lowest specific carbon dioxide emissions among coal power plants is a very good candidate for CO2 capture resulting in low energy penalties and minimised CO2 avoidance costs. In this paper, the techno-economic characteristics of four different capture technologies, which are built upon a conventional reference case, are studied using the chemical process simulation package “ECLIPSE”. The technology options considered are: physical absorption, water gas shift reactor membranes and two chemical looping combustion cycles (CLC), which employ single and double stage reactors. The latter system was devised to achieve a more balanced distribution of temperatures across the reactors and to counteract hot spots which lead to the agglomeration and the sintering of oxygen carriers. Despite the lowest efficiency loss among the studied systems, the economic performance of the double stage CLC was outperformed by systems employing physical absorption and water gas shift reactor membranes. Slightly higher efficiencies and lower costs were associated with systems with integrated air separation units. The estimation of the overall capital costs was carried out using a bottom-up approach. Finally, the CO2 avoidance costs of individual technologies were calculated based on the techno-economic data.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,