Article ID Journal Published Year Pages File Type
2078613 Cell Stem Cell 2008 12 Pages PDF
Abstract

SummaryRegulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-β signaling as a crucial factor controlling these processes. At early developmental stages, TGF-β signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/β-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-β signal activation counteracts Wnt-induced proliferation of midbrain neuroepithelial cells. Thus, TGF-β signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , , , , , , , , , , , , ,