Article ID Journal Published Year Pages File Type
207883 Fuel 2008 16 Pages PDF
Abstract

In this study, a 2D model for a CFB biomass combustor has been developed which integrates and simultaneously predicts the hydrodynamics, heat transfer and combustion aspects. Combustor hydrodynamic is modeled taking into account previous work. Simulation model calculates the axial and radial distribution of voidage, velocity, particle size distribution, pressure drop, gas emissions and temperature at each time interval for gas and solid phase both for bottom and upper zones. The model results are compared with and validated against experimental data both for small-size and industrial-size biomass combustors which uses different types of biomass fuels given in the literature. As a result of sensitivity analysis, it is observed that: major portion of the combustion will take place in the upper zone, the air staging could improve combustion, for industrial-size CFB biomass combustors and the decrease of NOx adversely results in high CO emissions as air ratio decreases. Unexpected results concerning the emissions is caused by using data of different sized CFBs and is clearly an indicator of the necessity to compare the model results with various sized CFBs as far as possible.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,