| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 208037 | Fuel | 2008 | 7 Pages |
In this research, Ni/SiO2 catalyst was modified with different amount of Gd2O3 and characterized with temperature-programmed desorption of CO2 (CO2-TPD) and NH3 (NH3-TPD), temperature-programmed reduction with H2 (H2-TPR) and X-ray diffraction (XRD). It was found that Gd2O3-modified Ni/SiO2 catalysts possessed higher CO2 adsorption and activation ability due to the formation of surface carbonate species. H2-TPR and XRD characterizations found that the strong interaction among nickel, Gd2O3 and SiO2 took place, which improved the dispersion of Ni. Gd2O3-modified Ni/SiO2 catalysts exhibited higher activity and stability for the combined oxy-CO2 reforming of methane in fluidized-bed reactor. The H2/CO ratio in produced syngas could be controlled via controlling reaction temperature and CO2/O2 ratio in feed.
