Article ID Journal Published Year Pages File Type
208284 Fuel 2007 13 Pages PDF
Abstract

In this work, the influence of fuel ash composition on high temperature aerosol formation during fixed bed combustion of woody biomass (two wood pellets and one bark pellets) were investigated experimentally in a laboratory reactor and theoretically through chemical equilibrium model calculations. For all fuels, the particle mass size distribution in the PM2.5 region was bimodal, with one fine mode and one coarse mode. Early in the flame, the fine mode was dominated by particles from incomplete combustion and these particles were rapidly oxidised in the post flame zone. After the hot flame, the fine mode concentration and the particle diameter increases gradually when the temperature decreases due to condensation of vaporised inorganic matter, K, Na, S, Cl, and Zn. For two of the fuels also P could be found in the fine particles. The coarse mode consisted of carbon, refractory metals and considerable amount of alkali. Further, the initial fuel alkali concentration and the alkali to silicon ratio (K + Na)/Si influenced the amount of vaporised aerosol forming alkali matter. Finally, the present study shows that, combustion temperature and fuel ash composition is of major importance for the formation of high temperature aerosols in fixed bed combustion of woody biomass pellets.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,