Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2083268 | European Journal of Pharmaceutics and Biopharmaceutics | 2016 | 8 Pages |
ContextMucus represents a critical obstacle for self-emulsifying drug delivery systems (SEDDS) targeting the epithelial membrane site.ObjectiveThe aim of the study was the development of a novel SEDDS to overcome the mucus barrier.Materials and methodsTwo novel conjugates N-dodecyl-4-mercaptobutanimidamide (thiobutylamidine-dodecylamine, TBA-D) and 2-mercapto-N-octylacetamide (thioglycolicacid-octylamine, TGA-O) were synthesized, incorporated into SEDDS and analyzed for stability, cytotoxicity and physico-chemical characteristics using dynamic light scattering. Mucus interaction studies were performed using in vitro assays based on multiple particle tracking, rotational silicone tubes and rheology.Results and discussionTBA-D was synthesized using dodecylamine and iminothiolane as thiol precursor (yield = 55 ± 5%). TGA-O was obtained via crosslinking of octylamine with SATA ((2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate) (yield = 70 ± 6%). The chemical structure of target compounds was confirmed via NMR analysis. The thiol-conjugates were incorporated in an amount of 3% (m/m) into SEDDS (Cremophor EL 30%, Capmul MCM 30%, Captex 355 30% and propylene glycol 10%), namely thiolated SEDDS leading to a droplet size around 50 nm and zeta potential close to 0 mV. Thiolated SEDDS with an effective diffusion coefficient 〈Deff〉 of up to 0.871 ± 0.122 cm2 s−1 × 10−9 were obtained. Rotational silicone studies show increased permeation of the thiolated SEDDS A in comparison with unthiolated control. Rheological studies confirmed the mucolytic activity of the thiol-conjugates which differed only by 3% from DTT (dithiothreitol) serving as positive control.ConclusionLow molecular weight thiol-conjugates were identified to improve the mucus permeation, leading to highly efficient mucus permeating SEDDS, which were superior to conventional SEDDS and might thus be a new carrier for lipophilic drug delivery.
Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (119 K)Download as PowerPoint slide