Article ID Journal Published Year Pages File Type
208371 Fuel 2013 10 Pages PDF
Abstract

A detailed chemical kinetic model to describe the autoignition of gasoline surrogate fuels is presented consisting of the fuels iso-octane, n-heptane, toluene, diisobutylene and ethanol. Model predictions have been compared with shock tube ignition delay time data for surrogates of gasoline over practical ranges of temperature and pressure, and the model has been found to be sensitive to both changes in temperature and pressure. Moreover, the model can qualitatively predict the observed synergistic and antagonistic non-linear blending behaviour in motor octane number (MON) for different combinations of primary reference fuels (PRFs) and non-PRFs by correlating calculated autoignition delay times from peak pressures and temperatures in the MON test to experimental MON values. The reasons for the blending behaviour are interpreted in terms autoignition chemistry.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,