Article ID Journal Published Year Pages File Type
2083829 European Journal of Pharmaceutics and Biopharmaceutics 2014 11 Pages PDF
Abstract

•Prilling was evaluated as technique to produce multiparticulate dosage forms.•Fatty acids and PEG were combined as matrix formers in order to tailor drug release.•Spherical particles with narrow particle size distribution were obtained.•The in vivo study revealed a similar bioavailability for immediate release prills.•The controlled release prills resulted in a significant higher bioavailability.

This study focused on the evaluation of prilling as a technique for the manufacturing of multiparticulate dosage forms. Prills, providing controlled and immediate drug release, were processed and finally combined in capsules yielding a fixed-dose combination. Metoprolol tartrate (MPT) and hydrochlorothiazide (HCT) were used as controlled and immediate release model drugs, respectively. These drugs were embedded in matrices composed of fatty acids and polyethylene glycol (PEG). In order to tailor drug release from the prills, the type of fatty acid, the PEG molecular weight and the fatty acid/PEG ratio were varied. To provide controlled drug release, MPT was embedded in matrices containing PEG and behenic acid. Using different PEG molecular weights (PEG 4000, 6000 and 10,000), MPT release could be tailored over a wide range. To obtain immediate release, HCT was incorporated in matrices composed of PEG and stearic acid. Since high amounts (at least 60%) of PEG were needed for acceptable immediate release, HCT release was independent on PEG molecular weight. Solid state characterization revealed that MPT crystallinity was decreased, while HCT was molecularly dispersed throughout the matrix. Drug release of both MPT and HCT prills was stable during storage. Compared to a fixed-dose reference, oral co-administration of the MPT and HCT prills to dogs yielded a similar bioavailability for the HCT prills, while the MPT prills resulted in a significant higher bioavailability.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (93 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , , ,