Article ID Journal Published Year Pages File Type
2087993 Journal of Genetic Engineering and Biotechnology 2011 7 Pages PDF
Abstract

Banana (Musa sp.) is considered as one of the most important fruit crops worldwide as well as in Egypt. The main goal of this study was to construct the open reading frame (ORF) of banana bunchy top nanovirus (BBTV)-DNA-3 that encodes the viral coat protein (cp) gene for banana transformation. The previously sequenced BBTV-G-DNA-3-ORF that cloned into plasmid pH1 was used as a template for PCR amplification using two specific primers containing Bam H1 site. A new plasmid called pRHA1 containing the amplified ORF under the control of maize polyubiquitin (ubi) promoter was created. The bar gene (herbicide-resistance gene as a selectable marker) cassette (bar gene, Cauliflower mosaic caulimovirus (CaMV) 35S promoter and nos terminator) was released from plasmid pAB6 using Hind III-digestion and subcloned into the Hind III-digested plasmid pRHA1 to create the plasmid pRHA2 via the microprojectile bombardment transformation system. The plasmid pRHA2 was successfully introduced in the applied banana cultivar. Leaf painting test was conducted to confirm the expression of the bar gene in the putative transformed banana lines. The presence and expression of BBTV-G-cp gene were also detected using some molecular (polymerase chain reaction and dot blot using a cold DNA probe) and serological (ELISA and western blot) techniques, respectively, in the obtained transgenic banana lines.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , ,