Article ID Journal Published Year Pages File Type
2088275 Journal of Immunological Methods 2013 7 Pages PDF
Abstract

In our search of new biomarkers for multiple sclerosis (MS), we aimed to characterize the immunoglobulin (Ig) free light chains (FLC) in patients' cerebrospinal fluid (CSF) and serum, and to evaluate the diagnostic utility of FLC monomer–dimer patterns for MS. FLC were analyzed by Western blotting and mass spectroscopy. CSF and serum samples were examined for the presence of oligoclonal Ig bands by a conventional laboratory test for MS. Three distinct pathological FLC monomer–dimer patterns, typical of MS but not of other neurological diseases, were revealed. In 31 out 56 MS patients the highly increased CSF levels of κ monomers and dimers were demonstrated. In 18 MS patients, the increased κ-FLC levels were accompanied by highly elevated λ dimers. Five MS cases showed no significant elevation in κ-FLC, but they displayed abnormally high λ dimer levels. The intensity of the immunoreactive FLC bands was measured to account for κ and λ monomer and dimer levels and their ratios in the CSF and serum. Combined usage of different FLC parameters allowed the determination of the appropriate FLC threshold values to diagnose MS. The developed method showed higher sensitivity and specificity (96% and 90%, respectively), as compared to those of the conventional OCB test (82% and 70%, respectively). Our study highlights the role of the differential analysis of monomeric and dimeric κ- and λ-FLC for the precise diagnosis of MS.

► We developed a new laboratory test to diagnose multiple sclerosis (MS). ► The test is based on Western blot analysis of free light chain (FLC). ► Abnormal FLC κ/λ and monomer/dimer ratios in cerebrospinal fluid are observed in MS. ► Our test is more sensitive and specific than the routine diagnostic oligoclonality test.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , , , , ,