Article ID Journal Published Year Pages File Type
2089107 Journal of Immunological Methods 2007 10 Pages PDF
Abstract

The applicability of a new technique, Microwave-Accelerated Surface Plasmon-Coupled Luminescence (MA-SPCL) for fast and sensitive bioassays in buffer, serum and whole blood using quantum dots as luminescence reporters is demonstrated. In this regard, a model bioassay based on the well-known interactions of biotin and streptavidin is used. Using MA-SPCL, the bioassay was kinetically completed within 1 min with the use of low power microwave heating as compared to the identical bioassay which took in excess of 30 min to reach > 95% completion at room temperature, a 30-fold increase in assay kinetics. The luminescence emission from the quantum dots was coupled to surface plasmons of the gold film, enabling the detection of the luminescence emission in a highly directional fashion as compared to the normal isotropic emission, for enhanced sensitivity and detection.The combined effect of microwaves for faster assay kinetics, with surface plasmon-coupled luminescence for sensitive luminescence measurements, has also made possible the demonstration of the use of the MA-SPCL technique for assays run in complex media, such as human serum and whole blood, where the same assay could not be performed at room temperature due to the coagulation of blood. In the MA-SPCL assay run in serum and whole blood, the luminescence intensity from 33 nM quantum dots was 75% and 20% that of the luminescence intensity from the assay run in buffer, with a signal to noise ratio of 12.5 and 3, respectively.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , ,