Article ID Journal Published Year Pages File Type
2093239 Stem Cell Reports 2016 10 Pages PDF
Abstract

•Derivation of large-scale functional vascular smooth muscle cells from hiPSCs•Fabrication of scaffold-free, mechanically robust, and functional 3D vascular rings•Recapitulation of key supravalvular aortic stenosis defects in 3D vascular rings

SummaryThere is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , , , , , , , , ,