Article ID Journal Published Year Pages File Type
2093662 Stem Cell Reports 2014 10 Pages PDF
Abstract

•Loss of Bright can alone reprogram or enhance conventional four-factor reprogramming•Bright directly represses Oct4, Sox2, and Nanog•Bright may function in somatic and embryonic stem cells to enforce differentiation

SummaryWe show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs) and enhancement of standard four-factor (4F) reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC) culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , , , , , , , , ,