Article ID Journal Published Year Pages File Type
2101417 Biology of Blood and Marrow Transplantation 2016 8 Pages PDF
Abstract

•Peripheral blood stem cell source is feasible in haploidentical transplantation.•The 2-step approach allows separate control over the graft T cell and stem cell doses.•Early immune recovery was seen in both haploidentical and matched related groups.•Clinical outcomes were comparable between haploidentical and matched related groups.•Grade 2 acute graft-versus-host disease was higher in the haploidentical group.

Haploidentical stem cell transplantation (SCT) offers a transplantation option to patients who lack an HLA-matched donor. We developed a 2-step approach to myeloablative allogeneic hematopoietic stem cell transplantation for patients with haploidentical or matched related (MR) donors. In this approach, the lymphoid and myeloid portions of the graft are administered in 2 separate steps to allow fixed T cell dosing. Cyclophosphamide is used for T cell tolerization. Given a uniform conditioning regimen, graft T cell dose, and graft-versus-host disease (GVHD) prophylaxis strategy, we compared immune reconstitution and clinical outcomes in patients undergoing 2-step haploidentical versus 2-step MR SCT. We retrospectively compared data on patients undergoing a 2-step haploidentical (n = 50) or MR (n = 27) peripheral blood SCT for high-risk hematological malignancies and aplastic anemia. Both groups received myeloablative total body irradiation conditioning. Immune reconstitution data included flow cytometric assessment of T cell subsets at day 28 and 90 after SCT. Both groups showed comparable early immune recovery in all assessed T cell subsets except for the median CD3/CD8 cell count, which was higher in the MR group at day 28 compared with that in the haploidentical group. The 3-year probability of overall survival was 70% in the haploidentical group and 71% in the MR group (P = .81), while the 3-year progression-free survival was 68% in the haploidentical group and 70% in the MR group (P = .97). The 3-year cumulative incidence of nonrelapse mortality was 10% in the haploidentical group and 4% in the MR group (P = .34). The 3-year cumulative incidence of relapse was 21% in the haploidentical group and 27% in the MR group (P = .93). The 100-day cumulative incidence of overall grades II to IV acute GVHD was higher in the haploidentical group compared with that in the MR group (40% versus 8%, P < .001), whereas the grades III and IV acute GVHD was not statistically different between both groups (haploidentical, 6%; MR, 4%; P = .49). The cumulative incidence of cytomegalovirus reactivation was also higher in the haploidentical group compared to the MR group (haploidentical, 68%; MR, 19%; P < .001). There were no deaths from GVHD in either group. Using an identical conditioning regimen, graft T cell dose, and GVHD prophylaxis strategy, comparable early immune recovery and clinical outcomes were observed in the 2-step haploidentical and MR SCT recipients.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , , , , , ,