Article ID Journal Published Year Pages File Type
2102774 Biology of Blood and Marrow Transplantation 2013 10 Pages PDF
Abstract

Uncontrolled cytomegalovirus (CMV) reactivation after allogeneic hematopoietic stem cell transplantation causes significant morbidity and mortality. Adoptive transfer of CMV-specific cytotoxic T lymphocytes (CTLs) is a promising therapy to treat reactivation and prevent viral disease. In this article, we describe the generation of clinical-grade CMV-specific CTLs directly from granulocyte colony-stimulating factor–mobilized hemopoietic progenitor cell (G-HPC) products collected for transplantation. This method requires less than 2.5% of a typical G-HPC product to reproducibly expand CMV-specific CTLs ex vivo. Comparison of 11 CMV CTL lines generated from G-HPC products with 52 CMV CTL lines generated from nonmobilized peripheral blood revealed similar expansion kinetics and phenotype. G-HPC–derived CTLs produced IFN-γ after reexposure to CMVpp65 antigen and exhibited CMV-directed cytotoxicity but no alloreactivity against transplantation recipient–derived cells. Seven patients received CMV-specific CTL lines expanded from G-HPC products in a prophylactic adoptive immunotherapy phase I/II clinical trial. Use of G-HPC products will facilitate integration of CTL generation into established quality systems of transplantation centers and more rapid inclusion of T cell therapies into routine clinical care.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , ,