Article ID Journal Published Year Pages File Type
2106631 Blood Reviews 2010 12 Pages PDF
Abstract

The common autosomally inherited mucocutaneous bleeding disorder, von Willebrand disease (VWD) results from quantitative or qualitative defects in plasma von Willebrand factor (VWF). Mutation can affect VWF quantity or its functions mediating platelet adhesion and aggregation at sites of vascular damage and carrying pro-coagulant factor VIII (FVIII). Phenotype and genotype analysis in patients with the three VWD types has aided understanding of VWF structure and function. Investigation of patients with specific disease types has identified mutations in up to 70% of type 1 and 100% of type 3 VWD cases. Missense mutations predominate in type 1 VWD and act through mechanisms including rapid clearance and intracellular retention. Many mutations are incompletely penetrant and attributing pathogenicity is challenging. Other factors including blood group O contribute to low VWF level. Missense mutations affecting platelet- or FVIII-binding through a number of mechanisms are responsible for the four type 2 subtypes; 2A, 2B, 2M and 2N. In contrast, mutations resulting in a lack of VWF expression predominate in recessive type 3 VWD. This review explores the genetic basis of each VWD type, relating mutations identified to disease mechanism. Additionally, utility of genetic analysis within the different disease types is explored.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
,