Article ID Journal Published Year Pages File Type
2106835 Cancer Cell 2014 14 Pages PDF
Abstract

•A single aberrant transcription factor directly activates or represses enhancers•Chromatin remodeling at enhancer elements is dictated by the underlying DNA sequence•EWS-FLI1 displays divergent patterns of chromatin remodeler recruitment•De novo enhancers mediate tumor dependencies

SummaryThe aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.

Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (613 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , , , , , , ,