Article ID Journal Published Year Pages File Type
2107915 Cancer Cell 2007 14 Pages PDF
Abstract

SummaryMany cancer cells are characterized by increased glycolysis and decreased respiration, even under aerobic conditions. The molecular mechanisms underlying this metabolic reprogramming are unclear. Here we show that hypoxia-inducible factor 1 (HIF-1) negatively regulates mitochondrial biogenesis and O2 consumption in renal carcinoma cells lacking the von Hippel-Lindau tumor suppressor (VHL). HIF-1 mediates these effects by inhibiting C-MYC activity via two mechanisms. First, HIF-1 binds to and activates transcription of the MXI1 gene, which encodes a repressor of C-MYC transcriptional activity. Second, HIF-1 promotes MXI-1-independent, proteasome-dependent degradation of C-MYC. We demonstrate that transcription of the gene encoding the coactivator PGC-1β is C-MYC dependent and that loss of PGC-1β expression is a major factor contributing to reduced respiration in VHL-deficient renal carcinoma cells.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , ,