Article ID Journal Published Year Pages File Type
2108238 Cancer Cell 2006 8 Pages PDF
Abstract

SummaryOverexpression of Bcl-xL, loss of p19ARF, and loss of p53 all accelerate Myc oncogenesis. All three lesions are implicated in suppressing Myc-induced apoptosis, suggesting that this is a common mechanism by which they synergize with Myc. However, using an acutely switchable model of Myc-induced tumorigenesis, we demonstrate that each lesion cooperates with Myc in vivo by a distinct mechanism. While Bcl-xL blocks Myc-induced apoptosis, inactivation of p19ARF enhances it. However, this increase in apoptosis is matched by increased Myc-induced proliferation. p53 inactivation shares features of both lesions, partially suppressing apoptosis while augmenting proliferation. Bcl-xL and p19ARF loss together synergize to further accelerate Myc oncogenesis. Thus, differing lesions cooperate oncogenically with Myc by discrete mechanisms that can themselves synergize with each other.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , ,