Article ID Journal Published Year Pages File Type
210835 Fuel Processing Technology 2010 4 Pages PDF
Abstract

Cross-linking reactions (CLR) of oxygen groups during liquefaction of lignite were quantitatively studied by a new model system. Chinese Yitai lignite (YT) was first oxidized by nitric acid at 70 °C and about 98% of the oxidized sample could be dissolved in tetrahydrofuran (THF) at room temperature. Then benzyl alcohol, PhCH2OH (BA), as a model compound was added into the oxidized coal, also acted as solvent in the subsequent liquefaction. Temperature-programmed reactions (TPR) at liquefaction conditions under hydrogen atmosphere were performed to evaluate the CLR by quantitative analysis of THF-insoluble solid products (THFI) after reaction. Extensive CLR were observed even under high pressure of H2 at 200–400 °C, and more than 51.7% and 81.2% of the THFS fraction was converted into the THFI at 300 °C with tetralin (TET) and BA as solvent, respectively. The THFI fraction was almost solely caused by the CLR, which makes it possible to quantitatively study the CLR by analyzing the amount of the cross-linked solid products (CSP). The pyrolysis behaviours of CSP and oxidized coal were examined by TG. Other model compounds containing oxygen-functional groups (alcohol, phenol, carboxyl, carbonyl and ether groups) can also be used in this model system to study CLR of oxygen groups in low-rank coals.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,