Article ID Journal Published Year Pages File Type
2110487 Cancer Genetics 2011 11 Pages PDF
Abstract

Genomic information is being used to develop robust prognostic and predictive biomarkers that will provide companion diagnostics for emerging molecular targeted therapies. The genetics and associated molecular pathways in ovarian cancer are increasingly being used for the development of novel targeted drugs with a much greater therapeutic specificity than standard chemotherapy. This review will provide an update on recent research on the therapeutic opportunities presented by mutational alterations to the epidermal growth factor receptor (EGFR) and phosphatidylinositide-3-kinase (PI3K/AKT/mTOR) pathways. In addition, the role of the deficient BRCA1/2-mediated homologous recombination (HR) (“BRCAness”) pathway is presented. Understanding the molecular biology of these pathways in the context of contemporary drug development means that somatic mutations and epigenetic losses of BRCA1/2 and PTEN in ovarian cancer are being used to predict sensitivity to new poly(ADP-ribose) polymerase (PARP) inhibitors that exhibit synthetic lethality with BRCA1/2 dysfunction and other repair pathways. Future predictive “biomarker pipelines” are being developed so that ovarian cancer patients will be able to avoid having treatments with drugs that will have no effect, whereas other patients with cancer may be eligible for therapies with a much higher probability of treatment response.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , ,