Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2110829 | Cancer Genetics and Cytogenetics | 2010 | 8 Pages |
MG132 (carbobenzoxy-Leu-Leu-leucinal) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In this study, we investigated the effects of MEK (mitogen-activated protein [MAP] kinase or extracellular signal–regulated kinase [ERK] kinase) or p38 inhibitor on MG132-treated Calu-6 lung cancer cells in relation to cell growth, cell death, ROS, and glutathione (GSH) levels. Treatment with 10 μmol/L MG132 inhibited the growth of Calu-6 cells at 24 hours. MG132 induced apoptosis in Calu-6 cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). ROS were increased in MG132-treated Calu-6 cells. MG132 also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor did not significantly affect cell growth, cell death, ROS, and GSH levels in MG132-treated Calu-6 cells. Furthermore, MG132 increased the phosphorylation of p38 in Calu-6 cells at 1 and 24 hours. Treatment with p38 inhibitor significantly prevented cell growth inhibition, MMP (ΔΨm) loss and apoptosis in MG132-treated Calu-6 cells. This inhibitor increased ROS level and decreased GSH depletion in these cells. In conclusion, p38 inhibitor partially prevented Calu-6 cell death by MG132, which might be affected by GSH level changes.