Article ID Journal Published Year Pages File Type
211324 Fuel Processing Technology 2009 9 Pages PDF
Abstract

The synergetic effects of HY-zeolite and silica-alumina (SA), as two major components of an FCC catalyst, on the cracking activity and coking tendency during catalytic cracking of 1,3,5-triisopropylbenzene (TiPB, as a resid representative) were studied. NaY-zeolite and SA were synthesized by hydrothermal and co-precipitation methods, respectively, and ammonium exchanged for three times at 80 °C. The catalysts were characterized by XRD, XRF, SEM, BET, AAS and ammonia TPD techniques. TiPB cracking was investigated on four different catalyst configurations including SA, Y-zeolite, SA.Y and SA-Y in a fixed bed reactor. SA.Y stands for physical mixture of equal amounts of Y-zeolite and SA. For SA-Y, a bed of SA was placed upstream of the same amount of Y-zeolite. The catalysts were in-situ activated at 475 °C and evaluated by TiPB cracking at 350 °C. The coke content of the catalyst beds, after 40 min cracking of TiPB, was estimated by TPO using an FT-IR gas cell. At 3 min time on stream, 5.2 times higher yield of benzene, as a deep cracking product, is observed on SA-Y as compared to SA.Y. The TiPB conversion decreases in the order of SA-Y > SA.Y > Y-zeolite ≫ SA. Furthermore, as compared to Y-zeolite, 24% lower coke is formed on SA-Y. Also CO evolution during TPO of coked SA-Y catalyst is about 24% lower than that of the coked zeolite. As a result, protecting of Y-zeolite by SA from direct exposure to resid feed enhances the cracking activity, decreases the tendency to coke formation and diminishes CO emission in the catalyst regeneration process.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,