Article ID Journal Published Year Pages File Type
2113744 Cancer Letters 2011 12 Pages PDF
Abstract

Bispecific scFv antibody-derivatives (bsscFvs) recruiting natural killer (NK) cells for the lysis of malignant cells have therapeutic potential. However, a bsscFv specific for the B-lymphoid tumor antigen CD19 and the trigger molecule CD16 on NK cells had similar affinities for both antigens (42 and 58 nM, respectively) and was not optimal for cytotoxicity. Therefore, a bispecific tribody (bsTb) was constructed with two binding sites for CD19 and one for CD16. This bsTb contained a CD19-specific Fab fragment carrying a CD16-specific scFv fused to its light chain and a CD19-specific scFv fused to its heavy chain. The bsTb was compared with a bispecific bibody (bsBb) lacking the CD19-specific scFv. The bsTb had 3-fold greater avidity for CD19 than the bsBb (8 and 24 nM, respectively), while both had equal affinity for CD16 (56 nM). Both molecules mediated antibody-dependent cellular cytotoxicity (ADCC) of leukemia-derived SEM cells and primary cells from leukemia patients. The bsTb showed half-maximum effective concentrations (EC50) of 55 pM and promoted equal lysis as the bsBb and the bsscFv at 6- and 12-fold lower concentrations, respectively. Among these three molecules the bsTb showed the most promising in vitro properties which are anticipated to be displayed also in vivo.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , , ,