Article ID Journal Published Year Pages File Type
2115626 Cancer Letters 2006 7 Pages PDF
Abstract

In recent years, photodynamic therapy (PDT) with a photosensitizer and laser has been given attention, especially for the treatment of superficial cancers, such as lung, gastric, bladder and cervical cancer. In this study, in order to enhance the efficacy of PDT, photofrin liposome (PF-Lip) was prepared with dimyristoylphosphatidylcholine, dimyristoylphosphatidylglycerol and cholesterol. Polyethyleneglycol modified photofrin liposome (PF-PEG-Lip) was prepared by modification of PF-Lip with monomethoxypolyethyleneglycol-2.3-dimyristoylglycerol. PF-Lip and PF-PEG-Lip entrapped with photofrin with 81.0±5.9 and 81.2±9.2%, respectively. The particle size of each liposome was 114.3±5.7 nm (PF-Lip) and 118±3.5 nm (PF-PEG-Lip), respectively. It was suggested that PEGylated liposomes has no effect on the trapping ratio of PF and particle size. Phototoxicity was enhanced by liposomalization, especially PEG-modification. However, PF-PEG-Lip inhibited the uptake of photofrin into tumor cells. The amount of singlet oxygen from photofrin solution (PF-sol) and each liposome was PF-PEG-Lip≒PF-Lip>PF-sol. The photofrin release revel of PF-PEG-Lip was lower than that of PF-Lip.In conclusion, the phototoxicity of PF-PEG-Lip was significantly higher than that of PF-sol or PF-Lip. It is expected that formation of a fixed aqueous layer on the liposome membrane by PEGylation physically changed it into the stable state of PF-PEG-Lip.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , ,