Article ID Journal Published Year Pages File Type
2119574 Differentiation 2012 12 Pages PDF
Abstract

A common element during early left–right patterning of the vertebrate body is left-sided nodal expression in the early-somite stage lateral plate mesoderm. Leftward cell movements near the node of the gastrulating chick embryo recently offered a plausible mechanism for breaking the presomite-stage molecular symmetry in those vertebrates which lack rotating cilia on the notochord or equivalent tissues. However, the temporal and functional relationships between generation of the known morphological node asymmetry, onset of leftward cell movements and establishment of stable molecular asymmetry in the chick remain unresolved. This study uses high-resolution light microscopy and in situ gene expression analysis to show that intranodal cell rearrangement during the phase of counter-clockwise node torsion at stage 4+ is immediately followed by symmetry loss and rearrangement of shh and fgf8 expression in node epiblast between stages 5− and 5+. Surprisingly, left-sided nodal expression starts at stage 5−, too, but lies in the paraxial mesoderm next to the forming notochordal plate, and can be rendered symmetrical by minimal mechanical disturbance of distant tissue integrity at stage 4. The “premature” paraxial nodal expression together with morphological and molecular asymmetries in, and near, midline compartments occurring at defined substages of early gastrulation help to identify a new narrow time window for early steps in left–right patterning in the chick and support the concept of a causal relationship between a—still enigmatic—chiral (motor) protein, cell movements and incipient left–right asymmetry in the amniote embryo.

► Revised time schedule of left–right patterning in the chick embryo. ► Node asymmetry arises synchronously with early notochord formation and is accompanied by cellular rearrangement within the node. ► Unexpected early asymmetrical expression of nodal challenges the role of shh in left–right patterning. ► Symmetrisation of early nodal expression after paranodal incision.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , ,