Article ID Journal Published Year Pages File Type
2120671 EBioMedicine 2016 13 Pages PDF
Abstract

•We designed a pre-clinical of disseminated for simultaneous identification of toxicity and efficacy in children.•The system is a co-culture of infected monocytes and 3 dimensional organotypic liver recapitulating children pharmacokinetics.•Pyrazinamide, central drug in treatment regimen, had no effect as monotherapy or contribute to the combination therapy.Due to fear of toxicity children are often not involved in clinical trials, and as a result the optimal treatment regimens are often lacking. As an example, toddlers and babies develop disseminated tuberculosis but are treated with regimens designed for adults with lung cavity disease. We designed a “glass-mouse” model of disseminated tuberculosis that simultaneously tests for the efficacy and toxicity of the anti-tuberculosis drugs for children with disseminated disease. We found that while not causing dose-dependent liver toxicity, one of the central drugs used to treat this children is likely not efficacious.

Treatment of disseminated tuberculosis in children ≤ 6 years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100 mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children ≤ 6 years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , ,