Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2120752 | EBioMedicine | 2016 | 11 Pages |
•We identified > 600 potent small molecule inhibitors of cellular lipid storage deposition.•RNA-Seq expression profiling discriminated the activity of three lead scaffolds and guided subsequent functional studies.•We discovered a class of DGAT1 inhibitors, which is active in fly and mammalian cell lines as well as whole flies.Obesity and other lipid storage associated diseases are a growing health threat of human populations. In an undirected phenotypic screen, we identified pharmacologically active small molecules that reduce or enhance lipid storage. Our work focuses on three lead structures that prevent lipid storage in diverse cellular systems including cells from a diabetes patient. In order to elucidate the compound mechanisms-of-action and cellular targets, we used a combination of RNA-Seq transcriptional profiling and diverse functional assays. Our results strongly suggest that one of our lead structures represents a class of inhibitors targeting the key lipogenic enzyme diacylglycerol acyltransferase 1.
Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened > 320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human) and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests.