Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2121013 | EBioMedicine | 2015 | 8 Pages |
•The sigma-2 receptor is an important drug target but its molecular identity has remained a hot topic of debate.•PGRMC1 has recently been reported to be the sigma-2 binding site (Nature Communications, 2011, 2:380).•Our data clarify that PGRMC1 and the sigma-2 receptor are distinct binding sites expressed by different genes.The sigma-2 receptor (S2R) is a potential important therapeutic target for cancer and neuronal diseases, yet its gene identity is a long-held mystery. While a recent prominent report concluded that a progesterone-binding protein (PGRMC1) is the sigma-2 receptor, the critical defining evidence was missing. We re-tested this conclusion using a genome-editing technology combined with chemical biology and pharmacological determinations. The unambiguous results indicate that PGRMC1 is not the originally defined true sigma-2 receptor. This study may benefit public health by guiding future discovery of the true identity of the sigma-2 drug binding site.
The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.