Article ID Journal Published Year Pages File Type
2121013 EBioMedicine 2015 8 Pages PDF
Abstract

•The sigma-2 receptor is an important drug target but its molecular identity has remained a hot topic of debate.•PGRMC1 has recently been reported to be the sigma-2 binding site (Nature Communications, 2011, 2:380).•Our data clarify that PGRMC1 and the sigma-2 receptor are distinct binding sites expressed by different genes.The sigma-2 receptor (S2R) is a potential important therapeutic target for cancer and neuronal diseases, yet its gene identity is a long-held mystery. While a recent prominent report concluded that a progesterone-binding protein (PGRMC1) is the sigma-2 receptor, the critical defining evidence was missing. We re-tested this conclusion using a genome-editing technology combined with chemical biology and pharmacological determinations. The unambiguous results indicate that PGRMC1 is not the originally defined true sigma-2 receptor. This study may benefit public health by guiding future discovery of the true identity of the sigma-2 drug binding site.

The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , ,