Article ID Journal Published Year Pages File Type
2126124 European Journal of Cancer 2006 15 Pages PDF
Abstract

An important problem in the treatment of children with acute lymphoblastic leukaemia (ALL) is pre-existent or acquired resistance to structurally and functionally unrelated chemotherapeutic compounds. Various cellular mechanisms can give rise to multidrug resistance (MDR). Best studied is the transmembrane protein-mediated efflux of cytotoxic compounds that leads to decreased cellular drug accumulation and toxicity. Several MDR-related efflux pumps have been characterised, including P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), breast cancer resistance protein (BCRP) and lung resistance protein (LRP). P-gp expression and/or activity has been associated with unfavourable outcome in paediatric ALL patients, whereas MRP1 and BCRP do not seem to play a major role. LRP might contribute to drug resistance in B-lineage ALL, but larger studies are needed to confirm these results. The present review summarises the current knowledge concerning multidrug resistance-related proteins and focuses on the clinical relevance and prognostic value of these efflux pumps in childhood ALL.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , ,