Article ID Journal Published Year Pages File Type
2131503 Experimental Cell Research 2011 12 Pages PDF
Abstract

The precise localization of transcribed DNA and resulting RNA is an important aspect of the functional architecture of the nucleus. To this end we have developed a novel in situ hybridization approach in combination with immunoelectron microscopy, using sense and anti-sense RNA probes that are derived from total cellular or cytoplasmic poly(A+) RNA. This new technology is much more gentle than classical in situ hybridization using DNA probes and shows excellent preservation of nuclear structure. Carried out on ultrathin sections of fixed and resin-embedded COS-7 cells, it revealed at high resolution the localization of the genes that code for the cellular mRNAs. Quantitative analysis shows that most transcribed DNA is concentrated in the perichromatin region, i.e. the interface between subchromosomal compact chromatin domains and the interchromatin space essentially devoid of DNA. The RNA that is produced is found mainly in the perichromatin region and the interchromatin space. These results imply that in the mammalian nucleus the chromatin fiber is folded so that active genes are predominantly present in the perichromatin region, which is the most prominent site of transcription.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , ,