Article ID Journal Published Year Pages File Type
2131986 Experimental Cell Research 2007 12 Pages PDF
Abstract

Understanding filopodial formation in motile cells is a pertinent task in cell biology. In the present study we show that expression of the human water channel aquaporin-9 (AQP9) in different cell lines induces the formation of numerous filopodial extensions. Several lines of evidence support the role of aquaporins functioning both as a water channel and signaling participant. The number of filopodia is decreased by site-directed serine substitutions in putative PKC-binding or -phosphorylation sites at amino acid position 11 and 222 in AQP9. The filopodial phenotype obtained with wild-type AQP9 is associated with elevated levels of active Cdc42, while serine-deleted mutants have reduced levels of GTP-Cdc42. Co-transfection with inhibitory N-WASP CRIB completely abolishes wild-type AQP9-induced filopodia formation. Active PKCζ phosphorylates wild-type AQP9 and myristoylated PKCζ pseudosubstrate inhibits the formation of filopodia in AQP9-expressing cells. Expression of wild-type AQP9, but not mock or serine substituted mutants, increases sensitivity to hypo-osmolaric conditions, yielding a rapid morphological rounding of cells and cell death starting as early as 24 h post-transfection. We propose that increased water influx through AQP9 is critically involved in the formation of membrane protrusions, and that AQP9-induced actin polymerization is augmented by activation of Cdc42 and PKCζ.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , ,